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S1 Supplementary data pre-processing and feature generation meth-
ods

In this section, the workflow of the deep learning-based BFE change predictions of protein-protein interac-
tions induced by mutations for the present SARS-CoV-2 variant analysis and prediction will be firstly in-
troduced, which includes four steps as shown in Figure S1: (1) Data pre-processing; (2) training data prepa-
ration; (3) feature generations of protein-protein interaction complexes; (4) prediction of protein-protein
interactions by deep neural networks. Next, the validation of our machine learning-based model will be
demonstrated, suggesting consistent and reliable results compared to the experimental deep mutations
data.
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Figure S1: Illustration of genome sequence data pre-processing and BFE change predictions.

S1.1 Data pre-processing and SNP genotyping

The first step is to pre-process the original SARS-CoV-2 sequences data. In this step, a total of 1,983,328
complete SARS-CoV-2 genome sequences with high coverage and exact collection date are downloaded
from the GISAID database [1] ( https://www.gisaid.org/) as of August 05, 2021. Complete SARS-CoV-2
genome sequences are available from the GISAID database [1]. Next, the 1,983,328 complete SARS-CoV-
2 genome sequences were rearranged according to the reference genome downloaded from the GenBank
(NC 045512.2) [2], and multiple sequence alignment (MSA) is applied by using Cluster Omega with default
parameters. Then, single nucleotide polymorphism (SNP) genotyping is applied to measure the genetic
variations between different isolates of SARS-CoV-2 by analyzing the rearranged sequences [3, 4], which is
of paramount importance for tracking the genotype changes during the pandemic. The SNP genotyping
captures all of the differences between patients’ sequences and the reference genome, which decodes a total
of 28,865 unique single mutations from 1,983,328 complete SARS-CoV-2 genome sequences. Among them,
724 non-degenerate mutations on the S protein RBD (S protein residues from 329 to 530) are detected. In
this work, the co-mutation analysis is more crucial than the unique single mutation analysis. Notably, the
SARS-CoV-2 unique single mutations in the world are available at Mutation Tracker. The analysis of RBD
mutations is available at Mutation Analyzer.
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S1.2 Methods for BFE change predictions

In this section, the process of the machine learning-based BFE change predictions is introduced. Once
the data pre-processing and SNP genotyping are carried out, we will firstly proceed with the training
data preparation process, which plays a key role in reliability and accuracy. A library of 130 antibodies
and RBD complexes, as well as an ACE2-RBD complex, are obtained from Protein Data Bank (PDB). RBD
mutation-induced BFE changes of these complexes are evaluated by the following machine learning model.
According to the emergency and the rapid change of RNA virus, it is rare to have massive experimental
BFE change data of SARS-CoV-2, while, on the other hand, next-generation sequencing data is relatively
easy to collect. In the training process, the dataset of BFE changes induced by mutations of the SKEMPI 2.0
dataset [5] is used as the basic training set, while next-generation sequencing datasets are added as assistant
training sets. The SKEMPI 2.0 contains 7,085 single- and multi-point mutations and 4,169 elements of that
in 319 different protein complexes used for the machine learning model training. The mutational scanning
data consists of experimental data of the binding of ACE2 and RBD induced mutations on ACE2 [6] and
RBD [7, 8], and the binding of CTC-445.2 and RBD with mutations on both protein [8].

Next, the feature generations of protein-protein interaction complexes are performed. The element-
specific algebraic topological analysis on complex structures is implemented to generate topological bar
codes [9–12]. In addition, biochemistry and biophysics features such as Coulomb interactions, surface ar-
eas, electrostatics, et al., are combined with topological features [13]. The detailed information about the
topology-based models will be demonstrated in subsection S1.3. Lastly, deep neural networks for SARS-
CoV-2 are constructed for the BFE change prediction of protein-protein interactions [9]. The detailed de-
scriptions of dataset and machine learning model are found in the literature [9, 14, 15] and are available at
TopNetmAb.

S1.3 Feature generation for machine learning model

S1.3.1 Topology features

Among all features generated for machine learning prediction, the application of topology theory makes
the model to a whole new level. Those summarized as other inputs are called as auxiliary features and
are described in Section S1.3.2 and S1.3.3. In this section, a brief introduction about the theory of topology
will be discussed. Algebraic topology [10, 11] has achieved tremendous success in many fields including
biochemical and biophysical properties [12]. Special treatment should be implemented for biology appli-
cations to describe element types and amino acids in poly-peptide mathematically, which element-specific
and site-specific persistent homology [14, 16]. To construct the algebraic topological features on protein-
protein interaction model, a series of element subsets for complex structures should be defined, which
considers atoms from the mutation sites, atoms in the neighborhood of the mutation site within a certain
distance, atoms from antibody binding site, atoms from antigen binding site, and atoms in the system that
belong to type of {C, N, O}, Aele(E). Under the element/site-specific construction, simplicial complexes is
constructed on point clouds formed by atoms. For example, a set of independent k+1 points is from one
element/site-specific set U = {u0, u1, ..., uk}. The k-simplex σ is a convex hull of k+1 independent points U ,
which is a convex combination of independent points. For example, a 0-simplex is a point and a 1-simplex
is an edge. Thus, a m-face of the k-simplex with m+1 vertices forms a convex hull in a lower dimension
m < k and is a subset of the k+1 vertices of a k-simplex, so that a sum of all its (k−1)–faces is the boundary
of a k–simplex σ as

∂kσ =

k∑
i=1

(−1)i〈u0, ..., ûi, ..., uk〉, (1)

where 〈u0, ..., ûi, ..., uk〉 consists of all vertices of σ excluding ui. The collection of finitely many simplices is
a simplicial complex. In the model, the Vietoris-Rips (VR) complex (if and only if B(uij , r) ∩ B(uij′ , r) 6= ∅
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for j, j′ ∈ [0, k]) is for dimension 0 topology, and alpha complex (if and only if ∩uij
∈σB(uij , r) 6= ∅) is for

point cloud of dimensions 1 and 2 topology [12].

The k-chain ck of a simplicial complex K is a formal sum of the k-simplices in K, which is ck =
∑
αiσi,

where αi is coefficients and is chosen to be Z2. Thus, the boundary operator on a k-chain ck is

∂kck =
∑

αi∂kσi, (2)

such that ∂k : Ck → Ck−1 and follows from that boundaries are boundaryless ∂k−1∂k = ∅. A chain complex
is

· · · ∂i+1−→ Ci(K)
∂i−→ Ci−1(K)

∂i−1−→ · · · ∂2−→ C1(K)
∂1−→ C0(K)

∂0−→ 0, (3)

as a sequence of complexes by boundary maps. Therefore, the Betti numbers are given as the ranks of
kth homology group Hk as βk = rank(Hk), where Hk = Zk/Bk, k-cycle group Zk and the k-boundary
group Bk. The Betti numbers are the key for topological features, where β0 gives the number of connected
components, such as number of atoms, β1 is the number of cycles in the complex structure, and β2 illustrates
the number of cavities. This presents abstract properties of the 3D structure.

Finally, only one simplicial complex couldn’t give the whole picture of the protein-protein interaction
structure. A filtration of a topology space is needed to extract more properties. A filtration is a nested
sequence such that

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. (4)

Each element of the sequence could generate the Betti numbers {β0, β1, β2} and consequentially, a series of
Betti numbers in three dimensions is constructed and applied to be the topological fingerprints in Figure S1.

S1.3.2 Residue-level features

Mutation site neighborhood amino acid composition Neighbor residues are the residues within 10 Å of
the mutation site. Distances between residues are calculated based on residue Cα atoms. Six categories
of amino acid residues are counted, which are hydrophobic, polar, positively charged, negatively charged,
special cases, and pharmacophore changes. The count and percentage of the 6 amino acid groups in the
neighbor site are regrading as the environment composition features of the mutation site. The sum, average,
and variance of residue volumes, surface areas, weights, and hydropathy scores are used but only the sum
of charges is included.

pKa shifts The pKa values are calculated by the PROPKA software [17], namely the values of 7 ionizable
amino acids, namely, ASP, GLU, ARG, LYS, HIS, CYS, and TYR. The maximum, minimum, sum, the sum of
absolute values, and the minimum of the absolute value of total pKa shifts are calculated. We also consider
the difference of pKa values between a wild type and its mutant. Additionally, the sum and the sum of the
absolute value of pKa shifts based on ionizable amino acid groups are included.

Position-specific scoring matrix (PSSM) Features are computed from the conservation scores in the
position-specific scoring matrix of the mutation site for the wild type and the mutant as well as their differ-
ence. The conservation scores are generated by PSI-BLAST [18].

Secondary structure The SPIDER2 software is used to compute the probability scores for residue torsion
angle and residues being in a coil, alpha helix, and beta strand based on the sequences for the wild type
and the mutant [19].

S1.3.3 Atom-level features

Seven groups of atom types, including C, N, O, S, H, all heavy atoms, and all atoms, are considered when
generating the element-type features. Meanwhile, other three atom types, i.e., mutation site atoms, all
heavy atoms, and all atoms, are used when generating the general atom-level features.
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Surface areas Atom-level solvent excluded surface areas are computed by ESES [20].

Partial changes Partial change of each atom is generated by pdb2pqr software [21] using the Amber
force field [22] for wild type and CHARMM force field [23] for mutant. The sum of the partial charges and
the sum of absolute values of partial charges for each atomic group are collected.

Atomic pairwise interaction interactions Coulomb energy of the ith single atom is calculated as the
sum of pairwise coulomb energy with every other atom as

Ci =
∑
j,j 6=i

ke
qiqj
rij

, (5)

where ke is the Coulomb’s constant, rij is the distance of ith atom to jth atom, and qi is the charge of ith
atom. The van der Waals energy of the ith atom is modeled as the sum of pairwise Lennard-Jones potentials
with other atoms as

Vi =
∑
j,j 6=i

ε
[(ri + rj

rij

)12 − 2
(ri + rj

rij

)6]
, (6)

where ε is the depth of the potential well, and ri is van der Waals radii.

In atomic pairwise interaction, 5 groups (C, N, O, S, and all heavy atoms) are counted both for Coulomb
interaction energy and van der Waals interaction energy.

Electrostatic solvation free energy Electrostatic solvation free energy of each atom is calculated using
the Poisson-Boltzmann equation via MIBPB [24] and are summed up by atom groups.

S2 Supplementary machine learning methods

The topology-based network model for BFE change predictions induced mutations on SARS-CoV-2 study-
ing applies a deep neural network structure. Similar approaches have been widely implemented in the
energy prediction of protein-ligand binding [25] and protein-protein interactions [16]. The neural network
method maps an input feature layer to output layer and mimics biological brains for solving problems
where numerous neuron units are involved and weights of neurons are updated by backpropagation meth-
ods. To make more complicated structure in order to extract abstract properties, more layers and more
neurons in each layer can be constructed. In the training process, optimization methods are applied to
avoid overfitting issue, such as dropout methods [26] that a partial of computed neurons of each layer is
dropped. For the model cross validations, the Pearson correlations of 10-fold cross validations is 0.864 and
root mean square error is 1.019 kcal/mol.

S2.1 Deep learning algorithms

A deep neural network is a neural network methods with multi-layers (hidden layer) of neurons between
the input and output layers. In each layer, the single neuron gets fully connecting with the neurons in next
leyer. It should be preserve the consistency of all labels when applying the model for mutation-induced
BFE change predictions. The loss function is constructed as following:

argmin
W,b

L(W, b) = argmin
W,b

1

2

N∑
i=1

(
yi − f(xi; {W, b})

)2
+ λ‖W‖2 (7)

where N is the number of samples, f is a function of the feature vector xi parameterized by a weight vector
W and bias term b, and λ represents a penalty constant.
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S2.2 Optimization

The backpropagation is applied to evaluated the loss function start from the output layer and propagates
backward through the network structure to update the weight vector W and bias term b. According to
that the gradient calculation is required, we apply the stochastic gradient descent method with momen-
tum which only evaluates a small part of training data and can be considered as calculating exponentially
weighted averages, which is given as

Vi = βVi−1 + η∇Wi
L(Wi, bi)

Wi+1 =Wi − Vi,
(8)

where Wi is the parameters in the network, L(Wi, bi) is the objective function, η is the learning rate, X and
y are the input and target of the training set, and β ∈ [0, 1] is a scalar coefficient for the momentum term.
The momentum term involved accelerates the converging speed.

S3 Supplementary validation

In the main content, we briefly summarized validations of our machine learning predictions and experi-
mental data. For large quantitative validations, we compared the BFE change prediction for mutations on
S protein RBD to the experimental deep mutational enrichment data on RBD binding to human ACE2 and
CTC-445.2 induced by RBD mutations [8,9,13]. To make these validations, we eliminated the experimental
deep mutational enrichment data of RBD binding to human ACE2 and CTC-445.2 from the training sets
and set them as testing sets, which have 1539 and 1500 samples, respectively. In the validation of RBD
and CTC-445.2 complex, there is a very high correlation between the enrichment data and machine learn-
ing predictions, as well as the validation of RBD binding to ACE2, with Pearson correlations are 0.69 and
0.70, respectively. The deep mutational enrichment data can give a proportional descriptor of the affinity
strength of protein-protein interactions induced by mutations. The machine learning methods, however,
gives stable and equalized evaluations, while experimental data might be different dramatically due to
conditions and environments.

In addition, we compared our machine learning results with other experimental data, which are es-
cape fraction, pseudovirus infection changes, and IC50 fold changes [9]. In the comparison of 35 cases to
experimental escape fractions on RBD binding to clinical trial antibodies induced by emerging mutations,
our machine learning predictions have a Pearson correlation of 0.80. Especially, those high escaping muta-
tions E484K and E484Q on LY-CoV555, and mutations K417T and K417N on LY-CoV016, are indicated by
both our predictions and the experimental data [9]. We also use the pattern comparisons of our prediction
to experimental data. Lastly, we collected experimental data from different literature [27–30]. According
to variations from different research groups, they were summarized in increasing/decreasing patterns of
emerging variant (including co-mutations) impacts on antibody therapies in clinical trials. In total there are
20 pattern comparisons with an excellent agreement between various experimental data and our predic-
tions, except for a minor discrepancy [9].

S4 Supplementary table

Table S1 shows the top 30 most observed S protein RBD mutations up to October 20, 2021.

S5 Supplementary figures

Time evolution of vaccination rate and the frequency of Y449S in CH and RO from December 26, 2020, to
October 22, 2021.
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Table S1: The top 30 most observed S protein RBD mutations. Here, BFE change refers to the BFE change for the S protein and human
ACE2 complex induced by a single-site S protein RBD mutation. A positive mutation-induced BFE change strengthens the binding
between S protein and ACE2, which results in more infectious variants. The count of antibody disruption represents the number
of antibodies and S protein complexes disrupted by a specific mutation. Here, an antibody and S protein complex is regarded as
disrupted if its binding affinity is reduced by more than 0.3 kcal/mol [31]. In addition, we calculate the antibody disruption ratio (%),
which is the ratio of the number of disrupted antibody and S protein complexes over 130 known complexes. Ranks are computed
from 737 observed RBD mutations.

Mutation
Worldwide BFE change Antibody disruption

Count Rank Change Rank Count Ratio Rank

L452R 972148 1 0.5752 33 39 30.0 121
T478K 946831 2 0.9994 3 2 1.54 651
N501Y 810997 3 0.5499 35 24 18.46 196
E484K 107739 4 0.0946 303 38 29.23 129
K417T 54233 5 0.0116 475 37 28.46 131
S477N 33969 6 0.0180 464 0 0.0 726
N439K 18464 7 0.1792 176 11 8.46 321
K417N 10732 8 0.1661 193 53 40.77 81
F490S 6161 9 0.4406 59 51 39.23 88
S494P 5527 10 0.0902 314 62 47.69 64
E484Q 4673 11 0.0057 484 30 23.08 163
R346K 4551 12 0.1234 253 6 4.62 442
N440K 4466 13 0.6161 27 0 0.0 723
L452Q 3235 14 0.9802 4 27 20.77 174
A520S 3226 15 0.1495 218 3 2.31 559
G446V 2547 16 0.1583 202 9 6.92 355
A522S 2527 17 0.1283 245 2 1.54 631
N501T 2327 18 0.4514 54 17 13.08 244
R357K 2006 19 0.1393 231 5 3.85 464
S477I 1774 20 -0.0002 500 2 1.54 660

A522V 1620 21 0.0705 355 1 0.77 663
V367F 1598 22 0.1764 178 0 0.0 725
V367L 1520 23 0.0465 399 0 0.0 728
A475V 1458 24 0.3069 104 10 7.69 333
P384L 1437 25 0.2681 115 18 13.85 241
N440S 1363 26 0.1499 216 2 1.54 598
A411S 1266 27 0.5023 46 11 8.46 319
D427N 1253 28 -0.1133 618 1 0.77 679
Y449S 1193 29 -0.8112 708 85 65.38 18
P479S 1182 30 0.3844 77 3 2.31 552

S6 Supplementary data

The Supplementary Data.zip contains four files as listed in the following subsection.

S6.0.1 Disrupted antibodies

File antibodies disruptmutation.csv shows the name of antibodies disrupted by mutations.

S6.0.2 List of antibodies

File antibodies.csv lists the Protein Data Bank (PDB) IDs for all of the 130 SARS-CoV-2 antibodies.
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Figure S2: Time evolution of vaccination rate and the frequency of Y449S in Switzerland (CH) and Romania (RO) from December
26, 2020, to October 22, 2021. The data is collected per 30-day. The red line shows the frequency of mutation Y449S. The orange and
purple areas represent at least one dose rate and fully vaccinated rate in each country.

S6.0.3 SNPs

File RBD comutation residue 10202021.csv lists all of the SNPs of RBD co-mutations.

S6.0.4 Non-degenerate RBD co-mutations

File Track Comutation 10202021.xlsx records all of the non-degenerate RBD co-mutations with their fre-
quencies, antibody disruption counts, total BFE changes, and the first detection dates and countries.
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